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We present the dependence of the magnetostriction yyAdj, films on Tbh and Gd doping
concentration and compare with the measured doping dependence of the high-frequency damping.
While the magnetostriction and the high-frequency damping are correlated, the dependence is
complicated. In particular, the high-frequency damping parameteincreases rapidly &
=0.008-0.84) with a modest increase in the magnetostri¢tigs —0.6x 10 © to 5.7x 10°) for

Tb doping concentrations up to 10%. For Gd doping, the high-frequency damping changes slowly
(«=0.008-0.02 as the doping concentration is increased to 10%, whereas the increase in
magnetostriction is similar to that observed in the Th-doped films. Further, it is possible to achieve
low magnetostriction Xs=2X 10 ®) near the region of critical damping. Measurements of the
angular dependence of the ferromagnetic resonance linewidth in Th-dopgéeNi flms show

little change similar to the behavior observed in undopeggf&, , films, although the linewidths

are considerably larger. This is in contrast to systems such@g&i, on NiO, which have a large
angular dependence indicating that the relaxation process proceeds through the generation of spin
waves. The enhanced damping in the Th-doped films appears, therefore, to be mediated through
direct phonon generation. @002 American Institute of Physic§DOI: 10.1063/1.1452708

I. INTRODUCTION the magnetization relaxes through the generation of spin
, . waves, the device response will decrease and become noisy.
Rare-earth doping has been shown to be an effectiv

. . i . .%urther, for successive MRAM write operations, the switch-
method to increase the high-frequency magnetic damping in

. ) o S ing threshold will vary considerably if a bit is reversed be-
ferromagnetic oxidés® and transition-metal thin film$:6In 9 L vary Y .

. o . . fore the magnetic system has fully relaxed after an initial

the case of microwave applications, increased damping, dur%versal

to the presence of rare-earth impurities, is undesirable since In this articl ine how th tostricti f
low-loss materials are usually required. For real-time appli- n this articie we examme ow the magpe ostric |.on 0
films correlates with the high-

cations, such as magnetic recording write heads, read sefre-earth-doped bliFe, : _
sors, and magnetic random-access menfBiRAM ), it may frquency dampln.g.. It is expected .that, if the rare-earth im-
be desirable to increase the magnetic damping to reduce bolrities couple efficiently to the lattice, the observed magne-
unwanted oscillations occurring during high-speed sense OF5ostriction should increase with doping in a manner similar to
erations and chaotic behavior occurring during memorythat of the high-frequency damping. Ta nonSstate ion
element switching. Several models have been introduced t&nd Gd(an S-state ion dopants were used since these dop-
explain the increased magnetic damping due to the additioAnts were expected to give strong and weak spin-lattice cou-
of rare-earth impuritie$3”® These models usually assume pling, respectively. If the increase in magnetostriction is too
that the rare-earth impurities act as an intermediate systesevere then rare-earth doping will not be a practical means of
that couples the magnetization to a thermal bath formed bgamping control. We found that high-frequency damping can
the phonons. These models, however, do not describe in dée increased dramatically while maintaining magnetostric-
tail how the impurities couple to the lattice and do not ad-tion within an acceptable range. Further, it was found that
dress the possibility that the impurities can couple strongly tahere was not a strict correlation between the increase in
spin-wave excitations that subsequently relax by phonoamping and magnetostriction.

emission. The details of how the long-wavelength magneti-  The angular dependence of the ferromagnetic resonance
zation excitations relax are important in determining the(FMR) linewidth was measured to give an indication
high-frequency performance of small magnetic devités. \hether the doping-induced damping is due to the generation
of phonons or spin waves. The FMR linewidth in the Tbh-
dElectronic mail: russek@boulder.nist.gov doped films showed a weak angular dependence similar to
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FIG. 1. Time dependence of the integrated inductive voltage of undoped and 5 .
2% Tb-doped 50 nm thick NiFe, » films in response to a 60 ps rise-time g 01 (b
step pulse. The integrated inductive signal is proportional to the average . . T T : T
0 2 4 6 8 10

transverse magnetization. The undoped films show underdamped behavior
with a damping constant @f=0.0082. The 2% doped film shows a critically Dopant concentration (%)

damped response wiia=0.124.
FIG. 2. (a) Damping constants of Th-doped and Gd-doped 50 nm thick

NiggFe» films. (b) Saturated magnetostrictions of Th-doped and Gd-

; : ; ; doped 50 nm thick NigFe , films. For the 10% Tb-doped film the anisot-
that observed in undOped CM:Q)'Z films and quite different ropy was larger than the applied fie(8.2 kA/m, 40 O¢ and the arrow

from the large angular dependence observed in systems thgki.ates the correction required to obtaig.
have strong spin-wave damping.

Il. EXPERIMENT damped magnetization rotation that attains its quiescent state

- . in ~1 ns. The final rotation angle is8° for both data sets

0=x=0.1, were cosputiered oo oxidsed sicon substratesS1OM The LL damping paramea obtained by fiting the
I P feal-time PIMM data, was 0.0082 for the undoped ¥, »

All films were 50 nm thick and deposited in a 10 kA/m o o
magnetic field to induce a uniaxial anisotropy. The magnetoEind 0.124 for the 2% doped fFe,,. The 2% Tb doped

e . ; - film is close to the critical-damping condition where the ob-
striction was measured with a beam-deflection system USing, .\ od oscillations disappear
3.2 kA/m (40 Oe rotating fields. The high-frequency re- bpear.

. . . . Rare-earth-doped transition-metal films have been
sponse was measured with both a pulsed inductive MIC S hown to retain most of their soft magnetic properties if the
wave magnetometefPIMM)! and traditional FMR tech- 9 prop

: : i <4%)4-© i
nigues. The PIMM system measures the induced voltagdolomg levels are low<4%) Further, low doping levels

: : S o Go not destroy desirable device properties such as giant mag-
produced by a time-varying thin-film magnetization gener- . . . .
. S o netoresistance. Spin valves were fabricated using a standard
ated in response to a 60 ps rise-time magnetic field puls

o . nm NipgFey/l nm Cq e, free layer ad a 5 nm
The PIMM data were fit with the Landau-—Liftshitid.L) . 0 .
equation with a damping term given by-@yuo/M )M Nig gFey» 2% Th/1 nm Cg ey 4 free layer. The addition of

% (M H), wherea is the damping constan; is the gyro- Th _sllghtly |nc.reased the sheet resistaf2®@.8 to 25.20) f_or
. . . A antiparallel alignmentand decreased the magnetoresistance
magnetic ratioM is the saturated magnetizatiox, is the . )
. o : o (8.0% to 5.4%. The impact of rare-earth doping could be
film magnetization, andH is the total effective field. FMR . :
. . . further reduced by doping only the free-layer region farthest
measurements were done in a;gEesonant cavity with an

unloaded resonance frequency fgt=9.78 GHz. The FMR from the spacer interface.
I|_neW|dth was characterlzgd as a function of th_e magneuzal-“. MAGNETOSTRICTION AND EMR MEASUREMENTS
tion angle as the magnetic field angle was varied out of the
plane of the film. The frequency linewidthw, was obtained The saturated magnetostrictiag for Th- and Gd-doped
from the measured field linewidthAH, using Aw Nig.gFey» films is shown in Fig. &). For the 10% Th-doped
=(dw,es/dH)AH, wheredw,./dH is the derivative of the film, the applied field(3.2 kA/m, 40 O¢ was less than the
resonant frequency with respect to the applied fiélihe  anisotropy field4.8 kA/m, 60 Og and the arrow in Fig. @)
in-plane FMR damping constant was obtained from the meaindicates the approximate correction required to obtain the
sured in-plane field linewidth using AH saturated magnetostriction from the measured magnetostric-
=(2/yuov3)a2wfy. tion. The magnetostriction of the undoped films is negative
Figure 1 shows the magnetization response of undopednd shows a positive increase as the Tb and Gd doping in-
and 2% Th-doped, 50 nm thick ]NiFe, » films being driven  crease. The behavior of the Th- and Gd-doped series are very
with a 60 ps rise-time 0.2 kA/m magnetic field pulse. A 1.0similar. There is a zero magnetostriction point near 1% dop-
kA/m bias field was applied along the easy axis. As seen, thing, and at 2% doping the magnetostriction is (1to 2)
undoped NjgF&, , is underdamped, with magnetization os- X 10" 6. This value is sufficiently low to allow this material
cillations persisting up to 4 ns after the application of theto be used in GMR sensors or MRAM elements. The mea-
drive pulse. The 2% doped film shows a more stronglysured high-frequency damping, as determined from LL fits of
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100 IV. DISCUSSION AND CONCLUSIONS
E "“““"‘-\M\.ﬂ\./m.._h. The angle-independent FMR linewidth lends support to
- u the long-held conjecture that rare-earth impurities couple di-
3 "'"""\w M rectly to the lattice. To confirm this conjecture, however,
< \y\ ‘ more work is needed to directly measure the spin-wave
% 101 ‘\N\ population excited during long-wavelength magnetization ro-
S ———— “'ww.,_v.—_v:__vr tations. Even if the majority of energy flow is directly to the
o TSN lattice, spin-wave generation may be present in sufficient
o= —e—2%Tb quantities to affect device performance.
UE_ —¥— NiO exchange-biased NiFe Our data indicate that, while magnetostriction and high-
1= 0%Tb : . : frequency damping are related, there is no prescribed depen-
6 15 30 4 60 75 90 dence of damping on magnetostriction. In particular, critical
Magnetization Angle ¢ damping can be engineered with low magnetostriction, and

FIG. 3. The FMR frequency linewidth as a function of magnetization angle!@r@€ magnetostriction can occur with low damping. While
for 50 nm thick Nj §Fe,, and 2% Th-doped NiFe, , films. Also shown is ~ the presence of magnetostriction necessarily mandates a flow
the frequency linewidth for a 10 nm thick jN¥ie, , film on NiO from Ref. of energy into |0ng-Wave|ength phono}ﬁhis process is not
11. The Th-doped film shows a similar angular dependence to that of th(fhe main mechanism of energy loss in the rare-earth-doped
Nio gFey » film despite an overall factor of 10 increase in the damping. Thet iti tals. Rath th | . t likelv d
Nio gFey» on NiO shows a qualitatively different angular dependence indica- ransition me a.S. ather, the energy loss Is most li _ey ue
tive of relaxation by spin-wave generation. to the generation of short-wavelength phonons and is deter-
mined by the details of the local ferrimagnetic ordfif the

_ ) _ _ ~_ Thbions have a strong random anisotropyhich competes
the PIMM data and in-plane FMR linewidth, is shown in Fig. \yith the antiferromagnetic Ni—Th, Fe—Tb exchange interac-
2(a) for both the Gd and Th doped series. In contrast to thgjong) then strong short-wavelength lattice distortions can be
magnetostriction data, the high-frequency damping, for theyoquced with little or no long-wavelength lattice distortions
Th and Gd doped series, are very different. The Tb'dc’pe@magnetostrictioh
series shows a rapid increase in damping whereas the Gd- Tqogether, the demonstration of critically damped behav-
doped series shows little variation. This result is consisteny, \with low magnetostriction and the suggestion that the
with earlier work on both ferromagnetic o>.<|d‘esand majority of magnetic energy goes directly into phonons
transition-metal filmé:> Tb dopants, due to their nonzero rather than spin waves, indicate that rare-earth doping may

orbital angular momentum, have anisotropic electron densipe 3 viable technique for the control of magnetic damping in
ties which cause lattice distortions when orbital mome”tsspintronics applications.

rotate in response to transition-metal magnetization rotation.
The FMR frequency linewidths for an undoped and a 2%
Th-doped film, as a function of magnetization angle, are
S . . ! ACKNOWLEDGMENT

shown in Fig. 3(the FMR linewidths have been normalized CKNO G S
by the gyromagnetic ratig=1.76< 10" T"* s™%). Both the The authors acknowledge the support of the NIST Nano-
undoped and doped piFe, , films show similar angular de- technology Initiative and Tom Silva and Tony Kos, of the
pendence despite an overall increase in linewidth by a factak|ST Magnetic Technology Division, for the development of
of 10. Both series show weak angular dependencies with the PIMM system.
30% decrease in the linewidth as the magnetization rotates
out of the film plane. This decrease in linewidth is consistent
with the dec_rease expected du.e to_ the change in ellipticity oflC_ Kittel, Phys. Revi15 1587 (1959.
the precession as the magnetization rotates out of plane asj. pilion and J. Nielsen, Phys. Rel20, 105 (1960.
suming a constant.'? Both series show a weak minimum at 2A. J. Heeger, T. G. Blocker Iil, and S. K. Ghosh, Phys. Re84, A399
a magnetization angle ab=55°. The angular dependence 431924)§sat G. Suran, H. Ouahmane, M. Rivoire, and J. Sztern, J. Appl

L . . . . Russat, G. Suran, H. Ou , M. Rivoire, . Sztern, J. Appl.
of the FMR linewidth of a Nj F ey film on NiO, from Ref. Phys.73, 1386(1993.
11, is shown for comparison. In contrast to the ffie;,and 53 Russat, G. Suran, H. Ouahmane, M. Rivoire, and J. Sztern, J. Appl.
2% Tb-doped NjgFe, films, the NjgFe, film on NiO Phys.73, 5592(1993.
shows a strong angular dependence of the FMR linewidth, \1";4%%%38; Kabos, F. Mancoff, and S. E. Russek, IEEE Trans. Maign.
Wlth a .decrease in linewidth k_’y a factor of 4.3 as the mag-7y, Sparks,Ferromagnetic Relaxation TheofvicGraw-Hill, New York,
netization rotates out of the film plane. The strong angular 1964.

dependence of the FMR linewidth for N, on NiO has ~ °V. L. Safonov and H. N. Bertram, Phys. Rev.e8, R14893(2000.

; ; ; °S. E. Russek, S. Kaka, and M. J. Donahue, J. Appl. P8i§s7070(2000.
been mterpreted as evidence for dampmg due to two_magnoﬂaT. J. Silva and T. M. Crawford, IEEE Trans. Ma%gﬁ 673{1(1992(). 0

proce;se& The uniform magnetization relaxes py generat-ig p_mcmichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Jr., J. Appl.
ing spin wavegmagnon$ created by the magnetic disorder Ppnys.83, 7037(1998.
in the exchange biasing at the\Fe&, —NiO interface. The EC E. Patton, J. Appl. Phy89, 3060(1968.
strength of this relaxation is proportional to the number of,,H- Suhl, IEEE Trans. Magr84, 1834(1998. .

. . . D. S. Bloomberg and G. A. N. ConnelMagnetic Recording Vol. ]I
degenerate spin-wave modes, which decreases rapidly as thggited by C. D. Mee and E. D. DaniéicGraw-Hill, New York, 1988,

magnetization rotates out of plane. p. 316.



